Last Time. For a finite dimensional vector space V we constructed an associative graded algebra:

$$\Lambda^* V = \bigoplus_{i=0}^{\dim V} \Lambda^i V = \Lambda^0 V \oplus \Lambda^1 V \oplus \Lambda^2 V \oplus \cdots \oplus \Lambda^{\dim V} V$$

Moreover, if $\{v_1, \ldots, v_n\}$ is a basis of V, then $\{v_{i_1} \wedge \cdots \wedge v_{i_l}\}_{i_1 < \cdots < i_k}$ is a basis of $\Lambda^k V$. Hence $\dim \Lambda^k V = \binom{n}{k}$.

Example 22.1. Let $V = (\mathbb{R}^3)^*$. Then dx, dy, dz form a basis. In particular:

$$dx(\vec{v}) = v_1$$

$$dy(\vec{v}) = v_2$$

$$dz(\vec{v}) = v_3$$

Furthermore, $\Lambda^1(\mathbb{R}^3)^*$ is spanned by $\{dx \wedge dy, dy \wedge dz, dz \wedge dx\}$ and $\Lambda^2(\mathbb{R}^3)^*$ is spanned by $\{dx \wedge dy \wedge dz\}$.

Proposition 22.2. For any linear map $A: V \to W$ there exits a unique map of graded algebras $\Lambda^*A: \Lambda^*V \to \Lambda^*W$ such that for all $v_1, \ldots, v_k \in V$ we have:

$$(\Lambda^* A)(v_1 \wedge \cdots \wedge v_k) = Av_1 \wedge \cdots \wedge Av_k$$

Proof. Consider the composite map $j: V \xrightarrow{A} W \hookrightarrow \Lambda^*W$. Then for all $v \in V$ we have $j(v) \cdot j(v) = 0$. So by the universal property of $V \hookrightarrow \Lambda^k V$ there exists a unique map of algebras $\Lambda^*A: \Lambda^*V \to \Lambda^*W$ such that the following diagram commutes:

Notation. Since $\Lambda^* A(\Lambda^k V) \subset \Lambda^k W$ it makes sense to set

$$\Lambda^k A := \Lambda^* A \big|_{\Lambda^k V}$$
.

Our goal is to interpret $\Lambda^k(V^*)$ as alternating linear maps. More precisely we want to prove:

Lemma 22.3. Let V be a finite dimensional vector space. For each $k \in \mathbb{Z}$ such that $1 \le k \le \dim V = n$ we have a natural isomorphism $\Lambda^k(V^*) \to \operatorname{Alt}^k(V, \ldots, V; \mathbb{R})$ such that $l_1 \wedge \cdots \wedge l_k \to [(v_1, \ldots, v_k) \mapsto \det(l_i(v_j))]$.

Example 22.4. Consider $dx \wedge dy \in \Lambda^2(\mathbb{R}^3)^*$. By Lemma 22.3above

$$(\mathrm{d}x \wedge \mathrm{d}y)(\vec{v}, \vec{w}) = \det \left(\begin{array}{cc} \mathrm{d}x(\vec{v}) & \mathrm{d}x(\vec{w}) \\ \mathrm{d}y(\vec{v}) & \mathrm{d}y(\vec{w}) \end{array} \right) = v_1 w_2 - v_2 w_1$$

Example 22.5. Consider $dx \wedge dy \wedge dz \in \Lambda^3(\mathbb{R}^3)^*$. Then

$$(\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z)(\vec{u}, \vec{v}, \vec{w}) = \det \begin{pmatrix} \mathrm{d}x(\vec{u}) & \mathrm{d}x(\vec{v}) & \mathrm{d}x(\vec{w}) \\ \mathrm{d}y(\vec{u}) & \mathrm{d}y(\vec{v}) & \mathrm{d}y(\vec{w}) \\ \mathrm{d}z(\vec{u}) & \mathrm{d}z(\vec{v}) & \mathrm{d}z(\vec{w}) \end{pmatrix} = \vec{u} \cdot (\vec{v} \times \vec{w}),$$

the scalar triple product of the vectors $\vec{u}, \vec{v}, \vec{w}$.

Our proof of Lemma 22.3 uses pairings.

Definition 22.6. A paring of two vector spaces is a bilinear map $b: V \times W \to \mathbb{R}$. The pairing is non-degenerate if for all $v \in V$ and all $w \in W$ the following holds:

$$\begin{bmatrix} b(v_0, w) = 0 & \forall w \in W \end{bmatrix} \Rightarrow v_0 = 0$$
$$\begin{bmatrix} b(v, w_0) = 0 & \forall v \in V \end{bmatrix} \Rightarrow w_0 = 0$$

Remark 22.7. We've seen that $(\Lambda^k V)^* = \operatorname{Hom}(\Lambda^k V, \mathbb{R}) \simeq \operatorname{Alt}^k(V, \dots, V; \mathbb{R})$. So to prove Lemma 22.3 it's enough to produce an isomorphism $(\Lambda^k V)^* \simeq \Lambda^k(V^*)$. We'll do so by constructing a pairing $\Lambda^k(V^*) \times \Lambda^k V \to \mathbb{R}$ such that $b(l_1 \wedge \dots \wedge l_n, v_1 \wedge \dots \wedge v_n) = \det(l_i(v_j))$.

Example 22.8 (of pairings). $V^* \times V \to \mathbb{R}$ such that $(l, v) \mapsto l(v)$ is a non-degenerate pairing.

Lemma 22.9. If $b: V \times W \to \mathbb{R}$ is a non-degenerate pairing, then the linear maps

$$b_1^{\#}: V \to W^*, \qquad b_1^{\#}(v)(-) \stackrel{\text{def}}{=} b(v, -)$$

 $b_2^{\#}: W \to V^*, \qquad b_2^{\#}(w)(-) \stackrel{\text{def}}{=} b(-, w)$

are isomorphisms.

Proof. By dimension count it is enough to check injectivity. By non-degeneracy of the pairing b we have:

$$b_1^{\#}(v) = 0 \iff b(v, w) = 0 \Rightarrow v = 0$$

Therefore $b_1^{\#}$ is injective. Similarly, $b_2^{\#}$ is injective.

Proof of Lemma 22.3. Consider the following 2k-linear map

$$\overbrace{V^* \times \cdots \times V^*}^{k} \times \overbrace{V \times \cdots \times V}^{k} \to \mathbb{R} \\
(l_1 \wedge \cdots \wedge l_k, v_1 \wedge \cdots \wedge v_l) \mapsto \det(l_i(v_j))$$

Then for each fixed k-tuple (v_1, \ldots, v_k) we have an alternating k-linear map $\Lambda^k V^* \times V \times \cdots \times V \to \mathbb{R}$ such that $(l_1 \wedge \cdots \wedge l_k, v_1 \wedge \cdots \wedge v_l) \mapsto \det(l_i(v_j))$. Freezing the left hand side gives a map $\Lambda^k V^* \times \Lambda^k V \to \mathbb{R}$ such that $(l_1 \wedge \cdots \wedge l_k, v_1 \wedge \cdots \wedge v_l) \mapsto \det(l_i(v_j))$. We get a pairing. Now let us prove non-degeneracy. $b: V \times W \to \mathbb{R}$ is non-degenerate if there exists a basis $\{v_1, \ldots, v_n\}$ of V and a basis $\{w_1, \ldots, w_n\}$ of W such that $b(v_i, w_j) = \delta_{ij}$. In our case pick a basis $\{e_1, \ldots, e_n\}$ of V^* . Let $\{e_1^*, \ldots, e_n^*\}$ denote the dual basis. Then $\{e_{i_1}, \ldots, e_{i_k}\}$ is a basis of $\Lambda^k V$ and $\{e_{i_1}^*, \ldots, e_{i_k}^*\}$ is a basis of $\Lambda^k V^*$. Note that

$$e_{j_1}^*(e_{i_1})\cdots e_{j_k}^*(e_{i_k}) = \begin{cases} 1 & \text{if } (i_1,\ldots,i_k) = (j_1,\ldots,j_k) \\ 0 & \text{else} \end{cases}$$

Therefore

$$b(e_{j_1}^* \wedge \dots \wedge e_{j_k}^*, e_{i_1} \wedge \dots \wedge e_{i_k}) = \sum_{\sigma \in S_k} (-1)^r e_{j_1}^*(e_{i_{\sigma(1)}}) = 1 + 0 + 0 + \dots + 0 = 1.$$

Typeset by R. S. Kueffner II